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概要
複素射影平面を複素多様体として考えた場合のホモロジー的ミラー対称性を SYZ 構成とモー
スホモトピーを用いて考える。SYZ構成のもとでは、正則直線束はミラー側のトーラス束のラグ
ランジュ切断に対応することが知られており、正則ベクトル束はラグランジュ多重切断に対応す
ると期待されている。本講演では、Oh-Suen(2024) により構成されたラグランジュ多重切断を
用いてモースホモトピーの圏を拡張を行う。

1 導入
ミラー対称性とは、ミラー対と呼ばれるシンプレクティック多様体X と複素多様体 X̌ の組 (X, X̌)

に対して、X のシンプレクティック幾何学的な量と X̌ の複素幾何学的な量が等価であるというもの
である。ミラー対称性の圏論的な定式化が Kontsevichによって予想されたホモロジー的ミラー対称
性である [Kon95]。これは、ミラー対 (X, X̌)に対して、X のラグランジュ部分多様体からなる導来
深谷圏と X̌ の連接層の導来圏の間に三角圏として同値

Db(Fuk(X)) ≃ Db(Coh(X̌))

が存在するという予想である。ミラー対称性の別の定式化として、Strominger-Yau-Zaslow によっ
て提案された SYZ予想である [SYZ96]。これは、ミラー対 (X, X̌)に対してある共通の底空間 B が
存在して X と X̌ が B 上のトーラスファイブレーションと双対トーラスファイブレーションによっ
て実現される:

X

��

X̌

��

B

,

という予想である (以下 SYZ構成)。SYZ構成において、X → B のラグランジュ切断と X̌ 上の正
則直線束が自然に対応することが知られている [LYZ00, Cha09]。より一般には X̌ 上の正則ベクト
ル束と X → B のラグランジュ多重切断が対応するとされており、Oh-Suenはトーリック曲面上の
トーリックベクトル束に対してそのミラーとなるラグランジュ多重切断を構成した [OS24]。
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一方、リーマン多様体 B 上の余接束 T ∗B のラグランジュ切断からなる深谷圏 Fuk(T ∗B)は B 上
のモースホモトピーの圏 Mo(B) と A∞ 擬同値となることが Fukaya-Oh によって証明されている
[FO97]。この結果をもとに、Kontsevich-Soibelmanは SYZ構成における底空間 B 上のモースホモ
トピーの圏Mo(B)を用いてホモロジー的ミラー対称性を示す枠組みを提案した [KS01]。特に、トー
リック多様体に対してはモーメント写像と呼ばれるトーラスファイブレーションが存在し、自然に
SYZ 構成を応用することができる。[FK21, Nak24a, Nak24b] ではトーリック多様体を複素多様体
とした場合のホモロジー的ミラー対称性を SYZ構成とモースホモトピーの圏を用いて肯定的に議論
されている。
本講演では、トーリック曲面を複素多様体として SYZ構成を考え、Oh-Suenによって構成された
ラグランジュ多重切断を用いたモースホモトピーの圏の拡張を提案する。特に、複素射影平面 CP 2

の正則接束 TCP 2 の大域切断がミラー側の拡張されたモースホモトピーの圏 Momult(P )でどのよう
に記述されるかを紹介する。

2 SYZ構成とラグランジュ多重切断
本節では、複素射影平面に対する SYZ 構成とラグランジュ多重切断について復習する。以降

N ∼= Z2, NR := N ⊗Z R, M := HomZ(N,Z), MR :=M ⊗Z Rとする。

2.1 SYZ構成
複素射影平面 CP 2 の開被覆 {Ui}i を次のように取る。

Ui =
{
[t0 : t1 : t2] ∈ CP 2

∣∣ ti ̸= 0
}
.

U0 での複素座標を (u, v) :=
(
t1
t0
, t2t0

)
とし、以降はこの複素座標を用いることにする。U0 において、

Fubini-Study形式 ωFS は次のように表される。

ωFS =
1

2
∂̄∂ log(1 + uū+ vv̄).

このとき、実トーラス T 2 が

(e
√
−1θ1 , e

√
−1θ2) · [t0 : t1 : t2] := [t0 : e

√
−1θ1t1 : e

√
−1θ2t2]

により作用し、これに対応してモーメント写像 µ̌ : CP 2 →MR が

µ̌([t0 : t1 : t2]) =

(
|t1|2

|t0|2 + |t1|2 + |t2|2
,

|t2|2

|t0|2 + |t1|2 + |t2|2

)
.

で与えられる。モーメント写像の像 P := µ̌(CP 2)は

P =
{
(x1, x2) ∈MR

∣∣ 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x1 + x2 ≤ 1
}
.

となり、これをモーメント多面体と呼ぶ (図 1)。
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図 1 モーメント多面体 P と CP 2 に対応する扇

モーメント写像はモーメント多面体の内部 B := Int(P ) 上ではトーラス束となる。そこで、
U := µ̌−1(B) とすると、これは TNR/N と同一視することができ、アファイン構造が (u, v) =

(eξ1+iy1 , eξ2+iy2)により定まる。U ∼= TNR/N 上で Fubini-Study形式 ωFS は

ωFS = 2
e2ξ1(1 + e2ξ2)dξ1 ∧ dy1 − e2ξ1e2ξ2dξ1 ∧ dy2 − e2ξ1e2ξ2dξ2 ∧ dy1 + e2ξ2(1 + e2ξ1)dξ2 ∧ dy2

(1 + e2ξ1 + e2ξ2)2

と表されるので、NR 上に次のような計量 {gij}が誘導される。

(
g11 g12

g21 g22

)
=


2e2ξ1(1 + e2ξ2)

(1 + e2ξ1 + e2ξ2)2
−2e2ξ1e2ξ2

(1 + e2ξ1 + e2ξ2)2

−2e2ξ1e2ξ2

(1 + e2ξ1 + e2ξ2)2
2e2ξ2(1 + e2ξ1)

(1 + e2ξ1 + e2ξ2)2

 .

自然な射影を prξ : TNR/N → NR と書くことにし、各ファイバーを計量 {gij} に関して双対
を取ったものを pNR : T ∗NR/M → NR と書くことにする。ここで、NR 上の関数として ψ :=
1
2 log(1 + e2ξ1 + e2ξ2)を考えると、 ∂2ψ

∂ξi∂ξj
= gij となるので、ルジャンドル変換 dψ : NR → B が

dψ(ξ1, ξ2) =

(
∂ψ

∂ξ1
,
∂ψ

∂ξ2

)
=

(
e2ξ1

1 + e2ξ1 + e2ξ2
,

e2ξ2

1 + e2ξ1 + e2ξ2

)
=: (x1, x2).

で与えられる。このとき、モーメント写像は µ̌ = dψ ◦ prξ となる。

NR × (MR/M) T ∗NR/M
pNR

$$

U
prξ

��

µ̌|U

��

NR
∼=
dψ

// B

T ∗NR/M には自然なシンプレクティック形式 ω = dξ1 ∧ dy1 + dξ2 ∧ dy2 が定まる。ここで (y1, y2)

は (y1, y2) の双対座標である。このシンプレクティック多様体 (T ∗NR/M,ω) を U の SYZ ミラー
と呼ぶことにする ([LYZ00, Cha09, FK21])。また、これ以降 B と NR を同一視することとし、
π := dψ ◦ pNR とする。



2.2 ラグランジュ多重切断
定義 2.1. [OS24, Definition 4.3] シンプレクティック多様体 (T ∗NR, ω)に対して、ラグランジュは
め込み*1L := (i : L̃ → T ∗NR) が次数 r のラグランジュ多重切断であるとは、合成 pL := pNR ◦ i :
L̃ → NR が次数 r の分岐被覆写像となることをいう。 以下、はめ込みの像 i(L̃) も L と書いたり
する。

[OS24]において、トーリック曲面上のトーリックベクトル束に対応するような T ∗NR のラグラン
ジュ多重切断が構成された。この構成は三段階に分かれており、まず分岐点の周りの local modelを
構成し、次に NR における無限遠の挙動が制御された部分を構成し、最後にこれらを貼り合わせるこ
とでラグランジュ多重切断が構成される。特に、NR における無限遠の挙動がトーリックベクトル束
の全 Chern類の情報の大半を持つ (より詳細は [OS24, Sue23]を参照)。ここでは、CP 2 の正則接束
TCP 2 のミラーとなるラグランジュ多重切断 LTCP2 についてのみ考え、分岐点の周りの local model

とモーメント多面体の頂点での挙動についてみていく。
(ξ1, ξ2)を NR = R2 ∼= Cの実座標、(ξ1, ξ2, y

1, y2)を T ∗NR ∼= C2 の実座標、T ∗NR の複素座標を
ξ := ξ1 +

√
−1ξ2, η := y1 +

√
−1y2 とする。このとき、T ∗NR の部分多様体 Lを次で定める。
L := {(ξ, η) ∈ C2 | ξ ∈ NR, ξ̄ = η2}.

直接計算により、ω|L2
= 0となることがわかるので、Lはラグランジュ部分多様体となる。これに

対して、NR 上の極座標 ξ = re
√
−1θ を用いると Lは次のように表される。

L =
{(
re

√
−1θ,

√
re−

√
−1 θ

2

)
∈ C2

∣∣∣ r ∈ R≥0, θ ∈ R
}

ここで、NR 上の関数 fL := 2
3r

3
2 cos 3

2θ を考え、dfL のグラフ

graph(dfL) =

{
(ξ, dfL(ξ)) ∈ C2

∣∣∣∣ ξ = re
√
−1θ ∈ C, fL(r, θ) =

2

3
r

3
2 cos

3

2
θ

}
.

を考えると、直接計算により
L = graph(dfL)

となることがわかる。ここで、fL は 2価の関数であり、原点が臨界点であることに注意する。以降
では、ブランチカットとして ξ1 軸の負の部分を取ることにし、fL の各分岐を f

(1)
L , f

(2)
L と書くこと

にする。次に、fL に対する勾配ベクトル場 grad(fL)を考えると

grad(fL) = r
1
2 cos

3θ

2

∂

∂r
− r−

1
2 sin

3θ

2

∂

∂θ

(
=

1

2
r

1
2 cos

θ

2

∂

∂ξ1
− 1

2
r

1
2 sin

θ

2

∂

∂ξ2

)
.

となることがわかる*2。この表示より、分岐点に出入りする積分曲線が 3 本あることが分かる
(θ = 0,± 2π

3 )。この L = graph(dfL) が LTCP2 の分岐点の周りの local model である (より詳細は
[Fuk05, Sue21]を参照)。

*1 はめ込み i : L̃ → T ∗NR がラグランジュはめ込みであるとは、dim(L̃) = 1
2
dim(T ∗NR) かつ i∗ω = 0 となるものの

ことをいう。
*2 埋め込み ι : C → C2; z 7→ (z̄, z2)と考えることで、第 2成分への射影 pr2 : C2 → C; (z1, z2) 7→ z2 に対するラグラ
ンジュ多重切断となる。実際 pr2 ◦ ι(z) = z2 であるから 2-fold branched covering mapとなっている。



NR における無限遠の挙動は、tropical Lagrangian multi-section と呼ばれるデータによって制御
される。ここでは正確な定義を述べないが、NR 上の完備な扇上の multi-valued piecewise linear

function φtrop として表される (詳細は [Sue23, Pay09]を参照)。特に、TCP 2 に対応するようなもの
φtrop
TCP2

は図 2で与えられる。この multi-valued piecewise linear function φtrop
TCP2

を smoothingした

p−−−−→

σ
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σ
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図 2 正則接束 TCP2 に付随する tropical Lagrangian multi-section (Ltrop
TCP2

, φtrop
TCP2

)。右側が
NR 上の完備な扇である。例えば cone σ0 上で φtrop

TCP2
(ξ1, ξ2) = −ξ1 or − ξ2 ということである。

もの φTCP2 の外微分のグラフ graph(dφTCP2 )がラグランジュ多重切断の NR における無限遠の挙動
となる。
local model L と graph(dφTCP2 ) を張り合わせることで構成されるラグランジュ多重切断 LTCP2

に対して、モーメント多面体の各頂点でのファイバー座標を考えると図 3となる。
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図 3 ラグランジュ多重切断 LTCP2 = L(1)
TCP2

∪ L(2)
TCP2

のモーメント多面体の各頂点でのファイ
バー座標。オレンジの点線はブランチカットであり、左の図が 1 枚目のシート L(1)

TCP2
のファイ

バー座標であり、右の図が 2枚目のシート L(2)
TCP2

のファイバー座標である。

3 モースホモトピー
B をリーマン多様体とする。モースホモトピーの圏 Mo(B) とは、B 上の滑らかな関数を対象と

し、射の空間をモース複体とするような A∞ 圏である。すなわち、Ob(Mo(B)) = C∞(B)であり、



f1, f2 ∈ Ob(Mo(B))に対して射の空間Mo(B)(f1, f2)が

Mo(B)(f1, f2) :=
⊕

p∈Crit(f2−f1)

C · p

により定義される*3。各臨界点はモース指数により次数付けされ、複体の構造が

∂(p) :=
∑

q∈Crit(f2−f1)
|q|=|p|+1

∑
γ∈Mp,q

±e−A(γ)q

により定まる。ここで、Mp,q は、臨界点 pから臨界点 q への勾配ベクトル場 grad(f2 − f1)の積分
曲線のモジュライ空間であり、A(γ)は積分曲線 γ に対する重みである。この圏は A∞ 圏であるから
高次の積が存在するがここでは扱わないこととする。
[FO97]において、この圏Mo(B)は余接束 T ∗B のラグランジュ切断*4からなる深谷圏 Fuk(T ∗B)

と A∞圏として擬同値となることが知られている。点 p ∈ Bが関数 f2−f1の非退化な臨界点である
ということは、df1(p) = df2(p)であるから、2つのラグランジュ切断 graph(df1)と graph(df2)が点
(p, dfi(p)) ∈ T ∗B で横断的に交わることと同値である。そのため、Mo(B)と Fuk(T ∗B)の対応は、
関数 fi に対してその外微分のグラフ Li := graph(dfi)が対応し、f2 − f1 の臨界点には L1 ∩L2 が対
応する*5。[KS01]において、このような深谷圏とモースホモトピーの圏の対応をもとにして、トーラ
ス束の場合に拡張しホモロジー的ミラー対称性が議論された。さらに、[FK21]において、底空間が
境界付きの場合に拡張された*6。以上をもとに、T ∗NR のラグランジュ多重切断を用いたMo(P )の
拡張Momult(P )を提案する。
Momult(P )の対象を [OS24]で構成された T ∗NR のラグランジュ多重切断 Lとし、各シートを L(i)

と書くことにする。すなわち L = ∪iL(i) である*7。2つのラグランジュ多重切断 L1,L2 がそれぞれ
の ramification locusを避けて横断的に交わるとき、射の空間を

Momult(P )(L1,L2) :=
⊕

p∈π(L1∩L2)

C · p =
⊕

p∈π(L(i)
1 ∩L(j)

2 )

C · p

と定義する。L(i)
1 = graph(df

(i)
1 ), L(j)

2 = graph(df
(j)
2 ) であるから、p ∈ π(L(i)

1 ∩ L(j)
2 ) = P に

対して、次数が f
(j)
2 − f

(i)
1 のモース指数として定義できる。複体の構造の定義も勾配ベクトル場

*3 「f2 − f1 がMorse関数である」という仮定を課していることに注意する。また、「f2 − f1 の任意の臨界点 p, q に対
して、勾配ベクトル場 grad(f2 − f1)に対する安定多様体W s(p)と不安定多様体Wu(q)が横断的に交わる」という
条件 (Morse-Smale条件)も課していることに注意する (より詳細は [FO97]を参照)。

*4 余接束の切断 s : B → T ∗B がラグランジュ切断であるとは、切断のグラフ graph(s) がラグランジュ部分多様体とな
ることであり、ある関数 f ∈ C∞(B)が存在して s = df となることと同値である。

*5 深谷圏における射の空間は、ラグランジュ部分多様体の交叉に対するフレアーコホモロジーとして定義される。これ
は、2つのラグランジュ部分多様体 L1, L2 に対して、フレアーコホモロジーは L1 ∩ L2 により張られるベクトル空間
であって、擬正則円盤の数え上げにより複体の構造が入る。

*6 トーリック多様に対しては、モーメント写像に対して SYZ 構成を適用してミラー多様体を考える。このとき、モー
メント多面体の境界を除いて構成するので、ミラー多様体自体はその分の情報が足りていない。その代わりに、考え
る圏に対して境界に対する条件を課すことでその情報を拾い上げている。今の場合、モーメント多面体 P とその内部
B = Int(P ) ∼= NR に対して、トーラス束に拡張した後のMo(B)に境界条件を課したものがMo(P )となる。

*7 分岐点を除けば、局所的にはラグランジュ切断の有限個の組とみなすことができる。すなわち、各 L(i) がラグラン
ジュ切断でありこれらに関数 f (i) が対応するので、この意味でMomult(P ) の対象は多価関数であり、multi-valued

Morse homotopyとしている。



grad(f
(j)
2 − f

(i)
1 )の積分曲線を数え上げることで定義できると期待できるが、関数の多価性 (特に分

岐点から出入りする積分曲線)があるため一般には非自明である。また、より一般に、高次の積も定
義できると期待でき、次の予想が考えられる。

予想 3.1. Momult(P )は A∞ 圏となる。

次節において、零切断 L0 から CP 2 の正則接束のミラーとなるラグランジュ多重切断 LTCP2 への
射の空間の計算を行い、ミラー対称性との関係を考察する。

4 主結果
まずは、CP 2 上の正則ベクトル束からなる dg圏 HV (CP 2)を考える。射の空間をベクトル束写

像の空間に CP 2 上の反正則微分形式の空間をテンソル積したものとして定義する。このとき、正則
ベクトル束の接続の (0, 1)-パートを用いることで dg圏を定めることができる。この圏において、階
数 1の自明束 Oから正則接束 TCP 2 への射の空間 HV (CP 2)(O, TCP 2)を考えると、0次のコホモロ
ジーが TCP 2 の大域切断の空間 Γ(CP 2, TCP 2)となる。すなわち

Hk(HV (CP 2))(O, TCP 2) ∼=

{
Γ(CP 2, TCP 2) (k = 0)

0 (otherwise)

dimH0(HV (CP 2))(O, TCP 2) = dimΓ(CP 2, TCP 2) = 8,

である。ここで、CP 2 はトーリック多様体でもあり、トーリック多様体の接束はトーリックベクト
ル束であることから、大域切断の空間の生成元を有限個の多面体の格子点を用いて表すことができ
る。これは、トーリック多様体上の直線束の大域切断を多面体の格子点を用いて表すことができるこ
との拡張である (より詳しくは [CLS11, DJS14]を参照)。今の場合、正則接束 TCP 2 に対応する多面
体たちは図 4となり、大域切断の空間の生成元は各格子点に対応して次のように表すことができる。

P(−1,0)

P(1,1)

P(0,−1)

1−1

1

−1

図 4 The parliament of polytopes associated to TCP2 .

(−1, 0)⊗ χ−(−1,1), (1, 1)⊗ χ−(0,1),

(−1, 0)⊗ χ−(−1,0), (−1, 0)⊗ χ−(0,0), (1, 1)⊗ χ−(0,0), (1, 1)⊗ χ−(1,0),

(0,−1)⊗ χ−(0,0), (1)

(0,−1)⊗ χ−(0,−1), (0,−1)⊗ χ−(1,−1).



ここで、(0,−1) ⊗ χ(0,0) + (1, 1) ⊗ χ(0,0) + (−1, 0) ⊗ χ(0,0) = 0 であることに注意すると、確かに
dimΓ(CP 2, TCP 2) = 8となっていることがわかる。
一方、階数 1の自明束のミラーは T ∗NR/M の零切断 L0 であり、正則接束のミラーは 2.2節で考

えた LTCP2 である。これらに対して射の空間 Momult(P )(L0,LTCP2 ) を考える。LTCP2 の NR にお
ける無限遠での挙動 (すなわちモーメント多面体の境界での挙動)より、交叉 L0 ∩ LTCP2 のモーメン
ト多面体への射影は図 5のとおりである。これらに対して、vb(0,0) の次数が 1であり、それ以外は次
数 0である*8。点 vb(0,0) は LTCP2 の分岐点であり、Momult(P )はこのような分岐点での交叉を避け

v(−1,0) v(0,−1) v(1,−1)v(1,0)

v(0,1) v(−1,1)

v2(0,0)

v1(0,0)

v0(0,0)

vb(0,0) vb(0,0)

π(L0 ∩ L(1)
TCP2

) π(L0 ∩ L(2)
TCP2

)

図 5 The projection of the intersection L0 ∩ LTCP2 to the moment polytope.

て定義しているため、適切に摂動させる必要がある。しかし、今の場合は射の空間に分岐点を次数 1

の元として形式的に付け加え勾配ベクトル場の積分曲線を考察することでうまく計算することができ
る。3つの臨界点 v0(0,0), v

1
(0,0), v

2
(0,0) と分岐点 vb(0,0) に付随する勾配ベクトル場の積分曲線は図 6の

ようになる ([Sue24]も参照)。

v2(0,0)

v1(0,0)

v0(0,0)

vb(0,0)

vb(0,0)

図 6 The gragient trajectories starting from v(0,0) and ending to vb(0,0).

*8 臨界点 vb
(0,0)

に対しては、モース指数を定義することはできない。今の場合、ラグランジュ部分多様体の交叉に対して
定まるマスロフ指数が 1となることから、vb

(0,0)
の次数を形式的に 1としている。



これにより、ある定数 c0, c1, c2 ∈ R≥0 を用いて

m1(v
0
(0,0)) = e−c0vb(0,0), m1(v

1
(0,0)) = e−c1vb(0,0), m1(v

2
(0,0)) = e−c2vb(0,0),

となり、他の v(i,j) に対しては m1(v(i,j)) = 0となるので

Hk(Momult(P ))(L0,LTCP2 )

∼=


⊕

(i,j)∈PP(TCP2 )\{(0,0)}

C · v(i,j) ⊕ C · (ec1v1(0,0) − ec0v0(0,0))⊕ C · (ec2v2(0,0) − ec0v0(0,0)) (k = 0)

0 (otherwise)

,

が得られる。ここで PP(TCP 2)は図 4の多面体に含まれる格子点の集合である。これにより、以下
のような TCP 2 の大域切断 (1)との対応を得ることができる。

v(−1,0) ↔ (−1, 0)⊗ χ−(−1,0), v(0,−1) ↔ (0,−1)⊗ χ−(0,−1),

v(1,0) ↔ (1, 1)⊗ χ−(1,0), v(1,−1) ↔ (0,−1)⊗ χ−(1,−1), (2)

v(0,−1) ↔ (0,−1)⊗ χ−(0,−1), v(−1,1) ↔ (−1, 0)⊗ χ−(−1,1),

−ec0v0(0,0) ↔ (1, 1)⊗ χ−(0,0), ec1v1(0,0) ↔ (−1, 0)⊗ χ−(0,0), ec2v2(0,0) ↔ (0,−1)⊗ χ−(0,0).

まとめると、次の結果を得る。

定理 4.1. コホモロジーの間の同型

Hk(Momult(P ))(L0,LTCP2 ) ∼= Hk(HV (CP 2))(O, TCP 2).

が存在する。

この結果の一般化として次の予想が期待される。

予想 4.2. A∞ 圏としての擬同値

Momult(P ) ≃ HV (CP 2)

が存在する。
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